Course Outcomes:

First Year B.Sc. Physics

1. Course Name: Mechanics (Sem 1, Paper 1)

After successful completion of course, students will be able to

CO1: Articulate and describe relative motion, inertial and non-inertial reference frames.

CO2: Apply the work energy relationship to simple physical situations.

CO3: Improve the ability to use the principles of theory of elasticity in Physics problems.

CO4: Corrrelate the property of surface tension with different natural phenomena.

CO5: To ideantify the relevant parameters that govern a fluid system and use dimensional analysis to ideantify the fundamental variables that define flow.

2. Course Name: Physics Principles And Applications (Sem 1, Paper 2)

After successful completion of course, student is expected to

CO1: Know about different atom model and will be able to differentiate different atomic systems.

CO2: Explain rotational, vibrational, electronic and Raman spectra of molecule.

CO3: Understand the theory and applications of emission, absorption, scattering of light from atoms and molecules.

CO4: To study the generation of electromagnetic radiations.

3. Course Name: Heat And Thermodynamics (Sem 2, Paper 1)

After successful completion of course, students will be able to

CO1: Understand and correctly use thermodynamic terminology.

CO2: Define the concepts of heat, work and energy.

CO3: Explain fundamental thermodynamic properties.

CO4: Derive and discuss the first law of thermodynamics.

CO5: Analyze basic thermodynamic cycles.

4. Course Name: Elecromagnetics (Sem 2, Paper 2)

After successful completion of course, student is expected to

CO1: Describe and understand the basic concepts of electricity and magnetism such as potential and field.

CO2: Understand the relationship between electric and magnetic fields.

CO3: Calculate the electrostatic and magnetic fields produced by static and moving charges in variety of simple configurations.

CO4: Understand to the broad outlook and appreciation of the contribution of electromagnetics to the fields of electrical, computer, and communication engineering.

5. Physics Practical

After successful completion of course, student is expected to

CO1. To demonstrate their practical skills.

CO2: To understand and practice the skills while doing Physics practicals.

CO3: To understand the use of apparatus and their use without fear.

CO4: To correlate their Physics theory concepts through practical.

CO5: Understand the concept of error and their estimation.

Second Year B.Sc. in Physics

1. Course Name: Mathematical Methods In Physics (PH211) (Sem 1, Paper 1)

On successful completion of course, student is expected to

CO1: Understand the basic mathematical concepts and applications of them in physical situations.

CO2: Understand the complex and vector algebra usefulness in Physics courses.

CO3: Understand concept of partial differentiation and role of partial differential equations in Physics.

CO4: Understand singular points of differential equation.

CO5: Apply skills of mathematical operators on particular problems.

2. Course Name: Electronics (PH212) (Sem 1, Paper 2)

After successful completion of course, students will be able to

CO1: Apply laws of electrical circuits to different circuits.

CO2: Understand the relations in electricity.

CO3: Understand the properties and working of transistors.

CO4: Understand the functions of operational amplifiers.

CO5: Design circuits using transistors and operational amplifiers.

CO6: Understand the Boolean Algebra and logic Circuits.

3. Course Name: Oscillations, Waves And Sound (PH221)(Sem 2, Paper 1)

On completion of course, the learner will be able to

CO1: Undrerstand the Physics and Mathematics of oscillations.

CO2: Solve the equation of motion for simple harmonic , damped, and forced oscillators.

CO3: Describe the oscillatory motion with graphs and equations.

CO4: Solve problems relating to undamped, damped and forced oscillators and superposition of oscilators.

CO5: Explain Doppler Effect, and predict in qualitative terms the frequency change.

CO6: Explain in qualitative terms how frequency ,amplitude, and wave shape affect the pitch, intensity, and quality of tones produced by musical instruments.

4. Course Name: Optics (PH 222) (Sem 2, Paper 2)

This course will enable you to

CO1: Acquire the basic concepts of wave optics.

CO2: Describe how light can constructively and destructively interfere.

CO3: Explain why a light beam spreads out after passing through an aperture.

CO4: Understand optical phenomena in terms of wave models.

CO5: Be familiar with a range of equipment used in modern Physics.

5. Physics Practical (PH223)

After successful completion of course, students will be able to

CO1: Use various instruments and equipments.

CO2: Design experiments to test a hypothesis and determine the value of an unknown quantity.

CO3: Investigate the theoretical background to the experiment.

CO4: Set up experimental equipments to implement an experimental approach.

CO5: Analyse data, plot appropriate graphs and reach conclusions from data analysis.